Skip to content

plots

Individual plot components

index_context = sl.create_context(0) module-attribute #

context: used for tracing parent card in the grid for height resizing

HeatmapPlot(plotstate) #

2D Histogram (heatmap) plot

Reactives

df: subset dataframe filter: subset filter hook layout: layout, used to hook height resizing dff: filtered dataframe

Parameters:

Name Type Description Default
plotstate PlotState

plot variables

required
Source code in src/sdss_explorer/dashboard/components/views/plots.py
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
@sl.component()
def HeatmapPlot(plotstate: PlotState) -> ValueElement:
    """2D Histogram (heatmap) plot

    Reactives:
        df: subset dataframe
        filter: subset filter hook
        layout: layout, used to hook height resizing
        dff: filtered dataframe

    Args:
        plotstate: plot variables
    """
    df: vx.DataFrame = SubsetState.subsets.value[plotstate.subset.value].df
    filter, set_filter = use_subset(id(df), plotstate.subset, name="heatmap")
    i = sl.use_context(index_context)
    layout, set_layout = sl.use_state({"w": 6, "h": 10, "i": i})

    def update_grid():
        # fetch from gridstate
        for spec in GridState.grid_layout.value:
            if spec["i"] == i:
                set_layout(spec)
                break

    sl.lab.use_task(update_grid, dependencies=[GridState.grid_layout.value])
    if filter is not None:
        dff = df[filter]
    else:
        dff = df

    def generate_cds():
        for axis in {"x", "y", "color"}:
            col = getattr(plotstate, axis).value
            if check_categorical(col):
                update_mapping(plotstate, axis="x")
        try:
            color, x_centers, y_centers, _ = aggregate_data(plotstate, dff)
        except Exception as e:
            logger.debug("failed plot init" + str(e))
            Alert.update("Failed to initialize heatmap" + str(e))
            x_centers = [0, 1, 2, 3]
            y_centers = [0, 1, 2, 3]
            color = np.zeros((4, 4))
        return ColumnDataSource(
            data={
                "x": np.repeat(x_centers, len(y_centers)),
                "y": np.tile(y_centers, len(x_centers)),
                "color": color.flatten(),
            })

    source = sl.use_memo(generate_cds, [])

    def create_figure():
        """Creates figure with relevant objects"""
        # obtain data
        p, menu = generate_plot(range_padding=0.0)
        xlimits = calculate_range(plotstate, dff, axis="x")
        ylimits = calculate_range(plotstate, dff, axis="y")

        # add grid, but disable its lines
        add_axes(plotstate, p)
        p.center[0].grid_line_color = None
        p.center[1].grid_line_color = None

        mapper = generate_color_mapper(plotstate, color=source.data["color"])
        # generate rectangles
        logger.debug(source.data)
        logger.debug(f"{mapper.low} to {mapper.high}")
        glyph = Rect(
            x="x",
            y="y",
            width=abs(xlimits[1] - xlimits[0]) / plotstate.nbins.value,
            height=abs(ylimits[1] - ylimits[0]) / plotstate.nbins.value,
            dilate=True,
            line_color=None,
            fill_color={
                "field": "color",
                "transform": mapper
            },
        )
        add_colorbar(plotstate, p, mapper, source.data["color"])
        gr = p.add_glyph(source, glyph)

        # create hovertool, bound to figure object
        add_all_tools(p, generate_tooltips(plotstate))
        update_tooltips(plotstate, p)
        add_callbacks(plotstate, dff, p, source, set_filter=set_filter)
        return p

    p = sl.use_memo(create_figure, dependencies=[])

    # workaround to have the reset ranges be the ranges of dff
    def add_reset_callback():
        # WARNING: temp method until Bokeh adds method for remove_on_event
        def on_reset(attr, old, new):
            """Range resets"""

            with p.hold(render=True):
                reset_range(plotstate, p, dff, axis="x")
                reset_range(plotstate, p, dff, axis="y")

        p.on_change("name", on_reset)

        # dump on regeneration
        def cleanup():
            p.remove_on_change("name", on_reset)

        return cleanup

    sl.use_effect(add_reset_callback, dependencies=[dff])

    pfig = FigureBokeh(p, dark_theme=DARKTHEME, light_theme=LIGHTTHEME)
    add_heatmap_effects(pfig, plotstate, dff, filter)
    add_common_effects(pfig, source, plotstate, dff, set_filter, layout)
    return pfig

HistogramPlot(plotstate) #

Histogram plot component.

Reactives

df: subset dataframe filter: subset filter hook layout: layout, used to hook height resizing dff: filtered dataframe

Parameters:

Name Type Description Default
plotstate PlotState

plot variables

required
Source code in src/sdss_explorer/dashboard/components/views/plots.py
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
@sl.component()
def HistogramPlot(plotstate: PlotState) -> ValueElement:
    """Histogram plot component.

    Reactives:
        df: subset dataframe
        filter: subset filter hook
        layout: layout, used to hook height resizing
        dff: filtered dataframe

    Args:
        plotstate: plot variables
    """
    df: vx.DataFrame = SubsetState.subsets.value[plotstate.subset.value].df
    filter, set_filter = use_subset(id(df), plotstate.subset, name="histogram")
    i = sl.use_context(index_context)
    layout, set_layout = sl.use_state({"w": 6, "h": 10, "i": i})

    def update_grid():
        # fetch from gridstate
        for spec in GridState.grid_layout.value:
            if spec["i"] == i:
                set_layout(spec)
                break

    sl.lab.use_task(update_grid, dependencies=[GridState.grid_layout.value])
    if filter is not None:
        dff = df[filter]
    else:
        dff = df

    def generate_cds():
        try:
            centers, edges, counts = aggregate_data(plotstate, dff)
        except Exception as e:
            Alert.update(f"Failed to initialize! {e}. Using dummy data.")
            centers = [0, 1, 2]
            edges = [0, 1, 2, 3]
            counts = [0, 0, 0]
        return ColumnDataSource(
            data={
                "centers": centers,
                "left": edges[:-1],
                "right": edges[1:],
                "y": counts,
            })

    source = sl.use_memo(generate_cds, dependencies=[])

    def create_figure():
        """Creates figure with relevant objects"""
        # obtain data
        p, menu = generate_plot()
        add_axes(plotstate, p)

        # generate rectangles
        glyph = Quad(
            top="y",
            bottom=0,
            left="left",
            right="right",
            fill_color="skyblue",
        )
        p.add_glyph(source, glyph)
        # p.y_range.bounds = [0, None] NOTE: tried this but it makes it janky to zoom

        p.y_range.start = 0  # force set 0 at start

        # create hovertool, bound to figure object
        add_all_tools(p, generate_tooltips(plotstate))
        for tool in p.toolbar.tools:
            if isinstance(tool, HoverTool):
                tool.point_policy = "follow_mouse"
        update_tooltips(plotstate, p)
        add_callbacks(plotstate, dff, p, source, set_filter=set_filter)
        return p

    p = sl.use_memo(create_figure, dependencies=[])

    # workaround to have the reset ranges be the ranges of dff
    def add_reset_callback():
        # WARNING: temp method until Bokeh adds method for remove_on_event
        def on_reset(attr, old, new):
            """Range resets"""

            with p.hold(render=True):
                reset_range(plotstate, p, dff, axis="x")
                reset_range(plotstate, p, dff, axis="y")

        p.on_change("name", on_reset)

        # dump on regeneration
        def cleanup():
            p.remove_on_change("name", on_reset)

        return cleanup

    sl.use_effect(add_reset_callback, dependencies=[dff])

    pfig = FigureBokeh(p, dark_theme=DARKTHEME, light_theme=LIGHTTHEME)
    add_histogram_effects(pfig, plotstate, dff, filter)
    add_common_effects(pfig, source, plotstate, dff, set_filter, layout)
    return pfig

ScatterPlot(plotstate) #

ScatterPlot component. Adaptively rerenders based on zoom state.

Reactives

df: subset dataframe filter: subset filter hook layout: layout, used to hook height resizing ranges: current plot ranges, used for adaptive rerendering dff: filtered dataframe dfe: filtered dataframe without local filter, used for resetting ranges

Parameters:

Name Type Description Default
plotstate PlotState

plot variables

required
Source code in src/sdss_explorer/dashboard/components/views/plots.py
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
@sl.component()
def ScatterPlot(plotstate: PlotState) -> ValueElement:
    """ScatterPlot component. Adaptively rerenders based on zoom state.

    Reactives:
        df: subset dataframe
        filter: subset filter hook
        layout: layout, used to hook height resizing
        ranges: current plot ranges, used for adaptive rerendering
        dff: filtered dataframe
        dfe: filtered dataframe _without_ local filter, used for resetting ranges

    Args:
        plotstate: plot variables
    """

    df: vx.DataFrame = SubsetState.subsets.value[plotstate.subset.value].df
    filter, set_filter = use_subset(id(df), plotstate.subset, name="scatter")
    i = sl.use_context(index_context)
    layout, set_layout = sl.use_state({"w": 6, "h": 10, "i": i})
    ranges, set_ranges = sl.use_state([[np.nan, np.nan], [np.nan, np.nan]])

    def update_grid():
        # fetch from gridstate
        for spec in GridState.grid_layout.value:
            if spec["i"] == i:
                set_layout(spec)
                break

    sl.lab.use_task(update_grid, dependencies=[GridState.grid_layout.value])

    def update_filter():
        logger.debug("updating local filter")
        xfilter = None
        yfilter = None

        try:
            lims = np.array(ranges[0])
            assert not np.all(lims == np.nan)
            xmax = np.nanmax(lims)
            xmin = np.nanmin(lims)
            xfilter = df[
                f"(({plotstate.x.value} > {xmin}) & ({plotstate.x.value} < {xmax}))"]
        except Exception as e:
            pass
        try:
            lims = np.array(ranges[1])
            assert not np.all(lims == np.nan)
            ymax = np.nanmax(lims)
            ymin = np.nanmin(lims)
            yfilter = df[
                f"(({plotstate.y.value} > {ymin}) & ({plotstate.y.value} < {ymax}))"]

        except Exception as e:
            pass
        if xfilter is not None and yfilter is not None:
            filters = [xfilter, yfilter]
        else:
            filters = [xfilter if xfilter is not None else yfilter]
        combined = reduce(operator.and_, filters[1:], filters[0])
        logger.debug("combined = " + str(combined))
        return combined

    # update on dataset (df) change, or range update
    local_filter = sl.use_memo(update_filter,
                               dependencies=[df, ranges[0], ranges[1]])

    async def debounced_filter():
        await asyncio.sleep(0.05)
        return local_filter

    # debounced output
    debounced_local_filter = sl.lab.use_task(debounced_filter,
                                             dependencies=[local_filter],
                                             prefer_threaded=False)

    # combine the filters every render
    filters = []
    try:
        if debounced_local_filter.finished:
            if debounced_local_filter.value == local_filter:
                if debounced_local_filter.value is not None:
                    filters.append(debounced_local_filter.value)
        if filter is not None:
            filters.append(filter)
        if filters:
            total_filter = reduce(operator.and_, filters[1:], filters[0])
            dff = df[total_filter]
        else:
            dff = df
    except Exception:
        dff = df
    if dff is not None:
        if len(dff) > 10001:  # bugfix
            dff = dff[:10_000]

    def generate_cds():
        """Generate initial CDS object. Runs once"""
        logger.debug("generating cds")
        try:
            assert len(dff) > 0, "zero data in subset!"
            x = fetch_data(plotstate, dff, "x").values
            y = fetch_data(plotstate, dff, "y").values
            color = fetch_data(plotstate, dff, "color").values
            sdss_id = dff["sdss_id"].values
        except Exception as e:
            logger.debug("failed scatter init" + str(e))
            Alert.update(f"Failed to initialize plot! {e} Using dummy data")
            x = [1, 2, 3, 4]
            y = [1, 2, 3, 4]
            color = [1, 2, 3, 4]
            sdss_id = [1, 2, 3, 4]
        source = ColumnDataSource(data={
            "x": x,
            "y": y,
            "color": color,
            "sdss_id": sdss_id,
        })
        logger.debug("cds = " + str(source.data))
        return source

    source = sl.use_memo(
        generate_cds,
        dependencies=[],
    )

    def create_figure():
        """Creates figure with relevant objects"""
        p, menu = generate_plot()
        # generate and add axes
        add_axes(plotstate, p)

        # generate scatter points and colorbar
        mapper = generate_color_mapper(plotstate, dff=dff)

        # add glyph
        glyph = Scatter(x="x",
                        y="y",
                        size=8,
                        fill_color={
                            "field": "color",
                            "transform": mapper
                        })
        p.add_glyph(source, glyph)
        add_colorbar(plotstate, p, mapper, source.data["color"])

        # add all tools; custom hoverinfo
        add_all_tools(p)
        update_tooltips(plotstate, p)
        add_callbacks(plotstate, dff, p, source, set_filter=set_filter)

        # add our special range callback for adaptive rerenders
        def on_range_update(event):
            logger.debug("range update ocurring")
            set_ranges([[event.x0, event.x1], [event.y0, event.y1]])

        from bokeh.events import RangesUpdate

        p.on_event(RangesUpdate, on_range_update)

        return p

    p = sl.use_memo(
        create_figure,
        dependencies=[],
    )

    # externally filtered df onlu
    # NOTE: this is different from dff, which is the fully filtered one
    def _get_dfe():
        if filter is not None:
            return df[filter]
        return df

    dfe = sl.use_memo(_get_dfe, dependencies=[df, filter])

    # workaround to make reset button aware of dff bounds are given the filtering
    # NOTE:reset callback must be aware of what dfe is and dump as necessary
    def add_reset_callback():
        # WARNING: temp method until Bokeh adds method for remove_on_event
        def on_reset(attr, old, new):
            """Range resets"""

            with p.hold(render=True):
                reset_range(plotstate, p, dfe, axis="x")
                reset_range(plotstate, p, dfe, axis="y")
                set_ranges([[np.nan, np.nan], [np.nan, np.nan]])

        p.on_change("name", on_reset)

        # dump on regeneration
        def cleanup():
            p.remove_on_change("name", on_reset)

        return cleanup

    sl.use_effect(add_reset_callback, dependencies=[dfe])

    pfig = FigureBokeh(
        p,
        dependencies=[],
        dark_theme=DARKTHEME,
        light_theme=LIGHTTHEME,
    )

    add_scatter_effects(pfig, plotstate, dff, filter)
    add_common_effects(pfig, source, plotstate, dff, set_filter, layout)
    return pfig

StatisticsTable(state) #

Statistics description view for the dataset.

Source code in src/sdss_explorer/dashboard/components/views/plots.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
@sl.component()
def StatisticsTable(state):
    """Statistics description view for the dataset."""
    df: vx.DataFrame = SubsetState.subsets.value[state.subset.value].df
    filter, set_filter = use_subset(id(df), state.subset, name="statsview")
    columns, set_columns = state.columns.value, state.columns.set

    # the summary table is its own DF (for render purposes)
    def generate_describe() -> pd.DataFrame:
        """Generates the description table only on column/filter updates"""
        # INFO: vaex returns a pandas df.describe()
        if filter:
            dff = df[filter].extract()  # only need df here, so make here
        else:
            dff = df

        try:
            assert len(dff) > 0
            dfd = dff[columns].describe(strings=False)
        except Exception as e:
            Alert.update(
                "Failed to get statistics! Is your data too small for aggregations?",
                color="warning",
            )
            logger.error(f"Failure on StatsTable: {e}")
            dfd = pd.DataFrame({"error": ["no"], "encountered": ["data"]})
        return dfd

    result = sl.lab.use_task(generate_describe,
                             dependencies=[filter, columns,
                                           len(columns)])

    def remove_column(name):
        """Removes column from column list"""
        # perform removal via slice (cannot modify inplace)
        # TODO: check if slicing is actually necessary

        q = None
        for i, col in enumerate(columns):
            if col == name:
                q = i
                break

        set_columns(columns[:q] + columns[q + 1:])

    column_actions = [
        # TODO: a more complex action in here?
        sl.ColumnAction(icon="mdi-delete",
                        name="Remove column",
                        on_click=remove_column),
    ]

    sl.ProgressLinear(result.pending)
    if ~result.not_called and result.latest is not None:
        ModdedDataTable(
            result.latest,
            items_per_page=7,
            column_actions=column_actions,
        )
    else:
        sl.Info("Loading...")
    return

TargetsTable(plotstate) #

Shows the table view, loading lazily via solara components.

Source code in src/sdss_explorer/dashboard/components/views/plots.py
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
@sl.component()
def TargetsTable(plotstate):
    """Shows the table view, loading lazily via solara components."""
    subset = plotstate.subset.value
    df = SubsetState.subsets.value[subset].df
    filter, _ = use_subset(id(df), plotstate.subset, name="filter-tableview")

    if filter is not None:
        dff = df[filter]
    else:
        dff = df

    dff = dff[plotstate.columns.value]

    return TargetsDataTable(
        dff,
        plotstate.columns.value,
        items_per_page=10,
        format=format_targets,
    )

show_plot(plottype, del_func, **kwargs) #

Helper function to show a specific plot type with its settings. Wraps all into card.

Note

PlotState is instantiated here.

Parameters:

Name Type Description Default
plottype str

plot type

required
del_func Callable

callable to delete this plot from the grid.

required
kwargs kwargs

overload for plot variable setup

{}
Source code in src/sdss_explorer/dashboard/components/views/plots.py
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
@sl.component()
def show_plot(plottype, del_func, **kwargs):
    """Helper function to show a specific plot type with its settings. Wraps all into card.

    Note:
        `PlotState` is instantiated here.

    Args:
        plottype (str): plot type
        del_func (Callable): callable to delete this plot from the grid.
        kwargs (kwargs): overload for plot variable setup

    """
    # NOTE: force set to grey darken-3 colour for visibility of card against grey darken-4 background
    dark = sl.lab.use_dark_effective()
    with rv.Card(
            class_="grey darken-3" if dark else "grey lighten-3",
            style_="width: 100%; height: 100%",
    ) as main:
        # NOTE: current key has to be memoized outside the instantiation (why I couldn't tell you)
        current_key = sl.use_memo(
            lambda: list(SubsetState.subsets.value.keys())[-1],
            dependencies=[])
        plotstate = PlotState(plottype, current_key, **kwargs)
        df = SubsetState.subsets.value[current_key].df

        def add_to_grid():
            """Adds a pointer/reference to PlotState instance in GridState for I/O."""
            GridState.states.set(list(GridState.states.value + [plotstate]))
            return None

        sl.use_memo(add_to_grid, dependencies=[])  # runs once

        if df is not None:
            with rv.CardText():
                with sl.Column(classes=[
                        "grey darken-3" if dark else "grey lighten-3"
                ]):
                    if plottype == "histogram":
                        HistogramPlot(plotstate)
                    elif plottype == "heatmap":
                        HeatmapPlot(plotstate)
                    elif plottype == "scatter":
                        ScatterPlot(plotstate)
                    elif plottype == "stats":
                        StatisticsTable(plotstate)
                    elif plottype == "targets":
                        TargetsTable(plotstate)
                    btn = sl.Button(
                        icon_name="mdi-settings",
                        outlined=False,
                        classes=[
                            "grey darken-3" if dark else "grey lighten-3"
                        ],
                    )
                    with sl.lab.Menu(activator=btn,
                                     close_on_content_click=False):
                        with sl.Card(margin=0):
                            show_settings(plottype, plotstate)
                            sl.Button(
                                icon_name="mdi-delete",
                                color="red",
                                block=True,
                                on_click=del_func,
                            )
    return main