Skip to content

plot_effects

Main functions for plot effects

add_common_effects(pfig, source, plotstate, dff, set_filter, layout) #

Adds common effects across plots.

Specifically adds flips, logs, and height resizing.

Parameters:

Name Type Description Default
pfig ValueElement

figure element

required
plotstate PlotState

plot variables

required
source ColumnDataSource

CDS object, for binding

required
dff DataFrame

filtered dataframe

required
set_filter Callable

filter setter, used for binding the crossfiltering updates

required
layout dict[str, int]

grid layout dictionary for the card. used for triggering height effect

required
Source code in src/sdss_explorer/dashboard/components/views/plot_effects.py
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
def add_common_effects(
    pfig: rv.ValueElement,
    source: ColumnDataSource,
    plotstate: PlotState,
    dff: vx.DataFrame,
    set_filter,
    layout,
):
    """Adds common effects across plots.

    Specifically adds flips, logs, and height resizing.

    Args:
        pfig: figure element
        plotstate: plot variables
        source: CDS object, for binding
        dff: filtered dataframe
        set_filter (Callable): filter setter, used for binding the crossfiltering updates
        layout (dict[str,int]): grid layout dictionary for the card. used for triggering height effect
    """

    def update_logx():
        """X-axis log scale callback"""
        fig_widget: BokehModel = sl.get_widget(pfig)
        if isinstance(fig_widget, BokehModel):
            fig_model = fig_widget._model
            if plotstate.logx.value and not check_categorical(
                    plotstate.x.value):
                fig_model.x_scale = fig_model.extra_x_scales["log"]
            else:
                fig_model.x_scale = fig_model.extra_x_scales["lin"]
            change_formatter(plotstate, fig_model, dff, axis="x")
            update_label(plotstate, fig_model, axis="x")
            reset_range(plotstate, fig_model, dff, axis="x")

    def update_logy():
        """Y-axis log scale callback"""
        fig_widget: BokehModel = sl.get_widget(pfig)
        if isinstance(fig_widget, BokehModel):
            fig_model = fig_widget._model
            if plotstate.plottype == "histogram":
                if plotstate.logy.value:
                    fig_model.y_scale = fig_model.extra_y_scales["log"]
                else:
                    fig_model.y_scale = fig_model.extra_y_scales["lin"]
            elif plotstate.logy.value and not check_categorical(
                    plotstate.y.value):
                fig_model.y_scale = fig_model.extra_y_scales["log"]
            else:
                fig_model.y_scale = fig_model.extra_y_scales["lin"]
            change_formatter(plotstate, fig_model, dff, axis="y")
            update_label(plotstate, fig_model, axis="y")
            reset_range(plotstate, fig_model, dff, axis="y")

    def update_flipx():
        """X-axis flip update"""
        fig_widget: BokehModel = sl.get_widget(pfig)
        if isinstance(fig_widget, BokehModel):
            fig_model: Plot = fig_widget._model
            reset_range(plotstate, fig_model, dff, axis="x")
            fig_model.x_range.flipped = plotstate.flipx.value

    def update_flipy():
        """Y-axis flip update"""
        fig_widget: BokehModel = sl.get_widget(pfig)
        if isinstance(fig_widget, BokehModel):
            fig_model: Plot = fig_widget._model
            reset_range(plotstate, fig_model, dff, axis="y")
            fig_model.y_range.flipped = plotstate.flipy.value

    def update_height():
        """Height linking callback, because auto-sizing doesn't work. Only runs if debounce completes"""
        fig_widget: BokehModel = sl.get_widget(pfig)
        if isinstance(fig_widget, BokehModel):
            fig_model = fig_widget._model
            with fig_model.hold(render=True):
                if debounced_height.finished:
                    if height == debounced_height.value:
                        fig_model.height = debounced_height.value

    def get_height():
        return layout["h"] * 45 - 90

    height = sl.use_memo(get_height, dependencies=[layout["h"]])

    async def debounce_height():
        await asyncio.sleep(0.05)
        return height

    debounced_height = sl.lab.use_task(debounce_height,
                                       dependencies=[height],
                                       prefer_threaded=False)

    # selection callback to update the filter object
    df = SubsetState.subsets.value[plotstate.subset.value].df

    def bind_crossmatch():

        def propogate_select_to_filter(attr, old, new):
            if len(new) > 0:
                logger.debug("starting filter operation")
                if plotstate.plottype == "histogram":
                    # NOTE: numpy arrays
                    if check_categorical(plotstate.x.value):
                        data = source.data["centers"][new]
                        mapping = getattr(plotstate, "xmapping")
                        dataExpr = df[plotstate.x.value].map(mapping)
                        logger.debug(f"hist: {str(dataExpr)}")
                        set_filter(dataExpr.isin(data))
                    else:
                        data = source.data["centers"][new]
                        col = plotstate.x.value
                        xmin = np.nanmin(data)
                        xmax = np.nanmax(data)
                        logger.debug(
                            f"hist: (({col}>={xmin})&({col}<={xmax}))")
                        set_filter(df[f"(({col}>={xmin})&({col}<={xmax}))"])

                elif plotstate.plottype == "heatmap":
                    # NOTE: numpy arrays
                    datax = source.data["x"][new]
                    datay = source.data["y"][new]
                    if check_categorical(plotstate.x.value):
                        mapping = getattr(plotstate, "xmapping")
                        colx = df[plotstate.x.value].map(mapping)
                        xfilter = colx.isin(datax)
                    else:
                        colx = plotstate.x.value
                        xmin = np.nanmin(datax)
                        xmax = np.nanmax(datax)
                        xfilter = (df[colx] >= xmin) & (df[colx] <= xmax)
                    if check_categorical(plotstate.y.value):
                        mapping = getattr(plotstate, "xmapping")
                        coly = df[plotstate.y.value].map(mapping)
                        yfilter = coly.isin(datay)
                    else:
                        coly = plotstate.y.value
                        ymin = np.nanmin(datay)
                        ymax = np.nanmax(datay)
                        yfilter = (df[coly] >= ymin) & (df[coly] <= ymax)
                    combined = xfilter & yfilter
                    logger.debug(f"heatmap: {str(combined)}")
                    set_filter(combined)

                elif plotstate.plottype == "scatter":
                    # NOTE: pyarrow ChunkedArrays
                    datax = source.data["x"].take(new)
                    datay = source.data["y"].take(new)
                    colx = fetch_data(plotstate, df, axis="x")
                    coly = fetch_data(plotstate, df, axis="y")
                    newfilter = (colx.isin(datax)) & (coly.isin(datay))
                    logger.debug(f"scatter: {str(newfilter)}")
                    set_filter(newfilter)
            else:
                logger.debug("unsetting filter")
                set_filter(None)

        source.selected.on_change("indices", propogate_select_to_filter)

        def cleanup():
            source.selected.remove_on_change("indices",
                                             propogate_select_to_filter)
            source.selected.indices = []

        return cleanup

    sl.use_effect(bind_crossmatch,
                  dependencies=[df, plotstate.x.value, plotstate.y.value])

    try:
        sl.use_effect(update_height, dependencies=[debounced_height.finished])
        sl.use_effect(update_flipx, dependencies=[plotstate.flipx.value])
        if plotstate.plottype != "histogram":
            sl.use_effect(update_flipy, dependencies=[plotstate.flipy.value])
        if plotstate.plottype != "heatmap":
            sl.use_effect(update_logx, dependencies=[plotstate.logx.value])
            sl.use_effect(update_logy, dependencies=[plotstate.logy.value])
    except Exception as e:
        logger.error("main effect bind error", e)

add_heatmap_effects(pfig, plotstate, dff, filter) #

Heatmap (rect glyph) specific effects

Parameters:

Name Type Description Default
pfig ValueElement

figure element

required
plotstate PlotState

plot variables

required
dff DataFrame

filtered dataframe

required
filter Expression

filter object, for use in triggering effects

required
Source code in src/sdss_explorer/dashboard/components/views/plot_effects.py
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
def add_heatmap_effects(pfig: rv.ValueElement, plotstate: PlotState, dff,
                        filter) -> None:
    """Heatmap (rect glyph) specific effects

    Args:
        pfig: figure element
        plotstate: plot variables
        dff (vx.DataFrame): filtered dataframe
        filter (vx.Expression): filter object, for use in triggering effects
    """
    df = SubsetState.subsets.value[plotstate.subset.value].df

    def update_data():
        """X/Y/Color data column change update"""
        fig_widget: BokehModel = sl.get_widget(pfig)
        if isinstance(fig_widget, BokehModel):
            fig_model: Plot = fig_widget._model
            if dff is not None:
                try:
                    assert len(dff) > 0
                    color, x_centers, y_centers, widths = aggregate_data(
                        plotstate, dff)
                except Exception as e:
                    logger.debug("exception on update_data (heatmap):" +
                                 str(e))
                    Alert.update(
                        "Your data is too small to aggregate! Not updating heatmap.",
                        color="warning",
                    )
                    return
                with fig_model.hold(render=True):
                    source = fig_model.renderers[0].data_source
                    fill_color = fig_model.renderers[0].glyph.fill_color
                    source.data = {
                        "x": np.repeat(x_centers, len(y_centers)),
                        "y": np.tile(y_centers, len(x_centers)),
                        "color": color.flatten(),
                    }
                    # NOTE: you have to remake the glyph because the height/width prop doesn't update on the render
                    glyph = Rect(
                        x="x",
                        y="y",
                        width=widths[0],
                        height=widths[1],
                        dilate=True,
                        line_color=None,
                        fill_color=fill_color,
                    )
                    fig_model.add_glyph(source, glyph)
                    fig_model.renderers = fig_model.renderers[1:]

                    # update all labels, ranges, etc
                    for axis in ("x", "y"):
                        update_label(plotstate, fig_model, axis=axis)
                        change_formatter(plotstate, fig_model, dff, axis=axis)
                        reset_range(plotstate, fig_model, dff, axis=axis)
                    update_color_mapper(plotstate, fig_model, dff, color)
                    change_formatter(plotstate,
                                     fig_model,
                                     dff,
                                     axis="color",
                                     color=color)
                    update_tooltips(plotstate, fig_model)

    def update_color():
        fig_widget: BokehModel = sl.get_widget(pfig)
        if isinstance(fig_widget, BokehModel):
            fig_model: Plot = fig_widget._model
            if dff is not None:
                try:
                    color = aggregate_data(plotstate, dff)[0]
                except AssertionError as e:
                    logger.debug("color update failed (heatmap)" + str(e))
                    Alert.update(
                        "Your data is too small to aggregate! Not updating heatmap.",
                        color="warning",
                    )
                    return
                with fig_model.hold(render=True):
                    fig_model.renderers[0].data_source.data[
                        "color"] = color.flatten()
                    update_color_mapper(plotstate, fig_model, dff, color)
                    change_formatter(plotstate,
                                     fig_model,
                                     dff,
                                     axis="color",
                                     color=color)
                    update_label(plotstate, fig_model, axis="color")
                    update_tooltips(plotstate, fig_model)

    def update_cmap():
        """Colormap update effect"""
        fig_widget: BokehModel = sl.get_widget(pfig)
        if isinstance(fig_widget, BokehModel):
            fig_model: Plot = fig_widget._model
            newmap = plotstate.Lookup["colorscales"][
                plotstate.colorscale.value]
            fig_model.right[0].color_mapper.palette = newmap
            fig_model.renderers[0].glyph.fill_color.transform.palette = newmap

    sl.use_effect(
        update_data,
        dependencies=[
            df,
            dff,
            plotstate.x.value,
            plotstate.y.value,
            plotstate.nbins.value,
            filter,
        ],
    )
    sl.use_effect(
        update_color,
        dependencies=[
            plotstate.color.value,
            plotstate.logcolor.value,
            plotstate.bintype.value,
        ],
    )
    sl.use_effect(update_cmap, dependencies=[plotstate.colorscale.value])

add_histogram_effects(pfig, plotstate, dff, filter) #

Histogram (quad glyph) specific effects

Parameters:

Name Type Description Default
pfig ValueElement

figure element

required
plotstate PlotState

plot variables

required
dff DataFrame

filtered dataframe

required
filter Expression

filter object, for use in triggering effects

required
Source code in src/sdss_explorer/dashboard/components/views/plot_effects.py
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
def add_histogram_effects(pfig: rv.ValueElement, plotstate: PlotState, dff,
                          filter) -> None:
    """Histogram (quad glyph) specific effects

    Args:
        pfig: figure element
        plotstate: plot variables
        dff (vx.DataFrame): filtered dataframe
        filter (vx.Expression): filter object, for use in triggering effects
    """
    df = SubsetState.subsets.value[plotstate.subset.value].df

    def update_data():
        """X/Y/Color data column change update"""
        fig_widget: BokehModel = sl.get_widget(pfig)

        if isinstance(fig_widget, BokehModel):
            fig_model: Plot = fig_widget._model
            try:
                assert len(dff) > 0, "zero length dataframe"
                centers, edges, counts = aggregate_data(plotstate, dff)
            except Exception as e:
                logger.debug("exception on update_data (hist):" + str(e))
                Alert.update(f"Data update failed on histogram! {e}",
                             color="warning")
                return
            with fig_model.hold(render=True):
                fig_model.renderers[0].data_source.data = {
                    "centers": centers,
                    "left": edges[:-1],
                    "right": edges[1:],
                    "y": counts,
                }
                for axis in ("x", "y"):
                    update_label(plotstate, fig_model,
                                 axis=axis)  # update all labels
                    reset_range(plotstate, fig_model, dff, axis=axis)
                change_formatter(plotstate, fig_model, dff, axis="x")
                update_tooltips(plotstate, fig_model)

    sl.use_effect(
        update_data,
        dependencies=[
            df,
            dff,
            plotstate.x.value,
            plotstate.nbins.value,
            filter,
        ],
    )

add_scatter_effects(pfig, plotstate, dff, filter) #

Scatter-glyph specific effects

Parameters:

Name Type Description Default
pfig ValueElement

figure element

required
plotstate PlotState

plot variables

required
dff DataFrame

filtered dataframe

required
filter Expression

filter object, for use in triggering effects

required
Source code in src/sdss_explorer/dashboard/components/views/plot_effects.py
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
def add_scatter_effects(
    pfig: rv.ValueElement,
    plotstate: PlotState,
    dff: vx.DataFrame,
    filter,
) -> None:
    """Scatter-glyph specific effects

    Args:
        pfig: figure element
        plotstate: plot variables
        dff: filtered dataframe
        filter (vx.Expression): filter object, for use in triggering effects
    """
    df = SubsetState.subsets.value[plotstate.subset.value].df

    def update_x():
        fig_widget: BokehModel = sl.get_widget(pfig)
        if isinstance(fig_widget, BokehModel):
            fig_model = fig_widget._model
            update_axis(plotstate, fig_model, dff, "x")

    def update_y():
        fig_widget: BokehModel = sl.get_widget(pfig)
        if isinstance(fig_widget, BokehModel):
            fig_model: Plot = fig_widget._model
            update_axis(plotstate, fig_model, dff, "y")

    def update_color():
        """Color data column change update"""
        fig_widget: BokehModel = sl.get_widget(pfig)
        if isinstance(fig_widget, BokehModel):
            fig_model: Plot = fig_widget._model
            update_axis(plotstate, fig_model, dff, "color")

    def update_cmap():
        """Colormap update effect"""
        fig_widget: BokehModel = sl.get_widget(pfig)
        if isinstance(fig_widget, BokehModel):
            fig_model: Plot = fig_widget._model
            with fig_model.hold(render=True):
                newmap = plotstate.Lookup["colorscales"][
                    plotstate.colorscale.value]
                fig_model.right[0].color_mapper.palette = newmap
                fig_model.renderers[
                    0].glyph.fill_color.transform.palette = newmap

    def update_filter():
        """Complete filter update"""
        fig_widget: BokehModel = sl.get_widget(pfig)
        if isinstance(fig_widget, BokehModel):
            fig_model: Plot = fig_widget._model
            if dff is not None:
                with fig_model.hold(render=True):
                    try:
                        x = fetch_data(plotstate, dff, axis="x").values
                        y = fetch_data(plotstate, dff, axis="y").values
                        color = fetch_data(plotstate, dff, axis="color").values
                        sdss_id = dff["sdss_id"].values
                    # in the event of chunking errors, pull
                    except AssertionError:
                        temp = dff.extract()
                        x = fetch_data(plotstate, temp, axis="x").values
                        y = fetch_data(plotstate, temp, axis="y").values
                        color = fetch_data(plotstate, temp,
                                           axis="color").values
                        sdss_id = temp["sdss_id"].values
                    fig_model.renderers[0].data_source.data = dict(
                        x=x,
                        y=y,
                        color=color,
                        sdss_id=sdss_id,
                    )
                    try:
                        update_color_mapper(plotstate, fig_model, dff)
                        change_formatter(plotstate,
                                         fig_model,
                                         dff,
                                         axis="color")
                    except AssertionError:
                        update_color_mapper(plotstate, fig_model, temp)
                        change_formatter(plotstate,
                                         fig_model,
                                         temp,
                                         axis="color")

    sl.use_effect(update_filter, dependencies=[df, dff])
    sl.use_effect(update_x, dependencies=[plotstate.x.value])
    sl.use_effect(update_y, dependencies=[plotstate.y.value])
    sl.use_effect(
        update_color,
        dependencies=[plotstate.color.value, plotstate.logcolor.value])
    sl.use_effect(update_cmap, dependencies=[plotstate.colorscale.value])
    return